Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Thermodynamically Modeled Non-equilibrium Structure of Combustion Products and Decomposition of Hydrazine-based Liquid Propellants

# 05, May 2016
DOI: 10.7463/0516.0841540
Article file: SE-BMSTU...o040.pdf (1517.26Kb)
authors: A.A. Dorofeev1,*, D.M. Yagodnikov1

1 Bauman Moscow State Technical University, Moscow, Russia

The paper studies the emerging hallmarks and the characteristics of a two-parameter chemical non-equilibrium structure of the combustion products of liquid propellants as applied to the low-thrust liquid propellant engines (LT LPE) operating in the aircraft control system. The study is based on hydrazine and nitrogen tetroxide products. The paper also analyses the catalytic and thermal decomposition of these substances in terms of inter-conditionality of the working process components in the combustion chamber and liquid pre-burner. The paper offers a technique to simulate these types of non-equilibrium as applied both to the a priori estimate and to the parametric optimization of LT LPE performance. It presents the possible equations of chemical dissociation reactions of hydrazine under various conditions, which determine a chemical disequilibrium of the process, and gives the examples to specify the source files for the software systems "Astra 4.rs" or "Terra".
The technique is implemented and tested on the basis of the software systems "Astra4.rs" and "Terra" in calculating the structure and properties of the liquid propellant combustion products, which include hydrazine, combustion products, ammonia, and products of their catalytic thermal decomposition. The paper provides numerical values of the upper and lower concentration limits of the non-equilibrium of a generated propellant, which correspond to the equilibrium ratio of concentrations between ammonia and products of its decomposition, as well as meet the absence of ammonia pyrolysis. For possible conditions of the non-equilibrium work process the values of void specific impulse are calculated.

  1. Biryukov V.I., Kozlov A.A. Vnutrikamernaya neustoichivost' rabochego protsessa v drosseliruemykh ZhRD [Intrachamber instability of the working process in LRE throttling.]. Moscow, MAI-PRINT Publ., 2007. 384 p. (in Russian).
  2. Yakutin A. V., Kolomentsev A. I. Mathematical modeling of gas-liquid flow in microchannels of various geometry under chemical reactions, friction and heat exchange. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva = Vestnik SibGAU, 2012, Iss.2. pp.112-116. (in Russian).
  3. Dorofeev A.A., Yagodnikov D.A., Chertkov K.O. Special Features of Calculating the Composition and Temperature of Combustion Products of Superrich Oxygen-Methane Fuel. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceeding of Higher Educational Institutions. Machine Building. 2015. Iss.10. pp. 85–95. (in Russian). DOI: 10.18698/0536-1044-2015-10-84-94
  4. Zel'dovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Matematicheskaya teoriya goreniya i vzryva [The mathematical theory of combustion and explosion]. Moscow, Nauka Publ., 1980. 479 p. (in Russian).
  5. Bratkov A.A., Seregin E.P., Gorenkov A.F et al. Khimmotologiya raketnykh i reaktivnykh topliv [Chemmotology of rocket and jet fuels]. Moscow, Khimiya Publ., 1987. 304 p.
  6. Shteinberg A.S. Bystrye reaktsii v energoemkikh sistemakh: vysokotemperaturnoe razlozhenie raketnykh topliv i vzryvchatykh veshchestv [Fast response in power-intensive systems: high-temperature decomposition of rocket propellants and explosives] – Moscow, Fizmatlit Publ., 2006. 208 p. (in Russian).
  7. Trusov B.G. Code System for Simulation of Phase and Chemical Equilibriums at Higher Temperatures. Inzhenernyy zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation, 2012, Iss.1, pp.240-249. (in Russian). DOI: 10.18698/2308-6033-2012-1-31
  8. Belyaev N.M. Sistemy nadduva toplivnykh bakov raket. [Pressurization system fuel tanks missiles]. Moscow, Mashinostroenie Publ., 1976. 336 p. (in Russian).
  9. Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya: Spravochnik: V 10 t. T. 1. Moscow, VINITI AN SSSR, 1971–1979. 266 p. (in Russian).
  10. Termicheskie konstanty veshchestv. Khimicheskie nauk i obrazovanie v Rossii: website. Available at: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/ welcome.html, accessed 06.01.2016. (in Russian).
  11. Belov G.V. Termodinamicheskoe modelirovanie: metody, algoritmy, programmy. [Thermodynamic modelling: methods, algorithms, programs]. Moscow, Nauchnyi mir Publ., 2002. 184 p. (in Russian).
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2018 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)