Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Numerical Simulation of Plasma-Dynamical Processes in the Technological Inductively Coupled RF Plasmatron with Gas Cooling

# 05, May 2016
DOI: 10.7463/0516.0840352
Article file: SE-BMSTU...o121.pdf (1497.66Kb)
authors: Yu.M. Grishin1,*, L. Miao1

1 Bauman Moscow State Technical University, Moscow, Russia

The electrodeless inductively coupled RF plasmatron (ICP) torches became widely used in various fields of engineering, science and technology. Presently, owing to development of new technologies to produce very pure substances, nanopowders, etc., there is a steadily increasing interest in the induction plasma. This generates a need for a broad range of theoretical and experimental studies to optimize the design and technological parameters of different ICP equipment.
The paper presents a numerical model to calculate parameters of inductively coupled RF plasmatron with gas-cooling flow. A finite volume method is used for a numerical solution of a system of Maxwell's and heat transfer equations in the application package ANSYS CFX (14.5). The pseudo-steady approach to solving problems is used.
A numerical simulation has been computed in the application package ANSYS CFX (14.5) for a specific design option of the technological ICP, which has a three-coils inductor and current amplitude in the range Jk = 50-170 A (3 MHz). The pure argon flows in the ICP. The paper discusses how the value of discharge current impacts on the thermodynamic parameters (pressure, temperature) and the power energy in discharge zone. It shows that the ICP can generate a plasma stream with a maximum temperature of about 10 kK and an output speed of 10-15 m / s. The work determines a length of the plasma stream with a weight average temperature of more than 4 kK. It has been found that in order to keep the quartz walls in normal thermal state, the discharge current amplitude should not exceed 150 A. The paper shows the features of the velocity field distribution in the channel of the plasma torch, namely, the formation of vortex in the position of the first coil. The results obtained are important for calculating the dynamics of heating and evaporation of quartz particles in the manufacturing processes for plasma processing of quartz concentrate into high-purity quartz and polycrystalline silicon.


  1. Boulos M.I. The inductively coupled radio frequency plasma. High Temp. Material Processes, 1997, Vol. 1, pp. 17-39. DOI: 10.1615/HighTempMatProc.v1.i1.20
  2. Nоvikov I.N., Krychinin A.M. Processing of fine zirconium silicate powder in a stream of HFI-torch. Pis'ma v ZhTF, 2014, vol. 40, no. 20, pp. 17-21. (In Russian).
  3. Borisov L.A., Grishin Yu.M., Kozlov N.P. Studies into the modification of the composition of impurities of natural quartz particles in a dispersed plasma flow. Teplofizika vysokikh temperatur, 2007, vol. 45, no. 5, pp. 777–781. (In Russian). (English version of journal: High Temperature, 2007, vol. 45, no. 5, pp. 708-712. DOI 10.1134/S0018151X07050203)
  4. Grishin Yu.M., Kozlov N.P., Skryabin A.S. Experimental study of the plasmochemical method for the direct production of silicon from quartz. Teplofizika vysokikh temperatur, 2012, vol.50, no. 4, pp. 491–496. (In Russian). (English version of journal: High Temperature, 2012, vol. 50, no. 4, pp 459-463. DOI: 10.1134/S0018151X12040086)
  5. Ameya B., Christopher R.P, Steven A.C, Carter С.B. Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure inductively coupled plasma. Journal of Applied Physics, 2003, vol. 94, no. 3, pp. 1969–1974. DOI: 10.1063/1.1586957
  6. Timoshenko S.P., Prokopiev E.P., Diachkov S.A. Synthesis of fine powders in the plasma. Fizika i khimiya obrabotki materialov = Physics and chemistry of materials treatment, 2002, no. 5, pp. 26-31. (In Russian).
  7. Morsli M.E., Proulx P. A chemical non-equilibrium model of an air supersonic ICP. Appl. Phys., 2007, vol. 40, pp.387-394. DOI: 10.1088/0022-3727/40/2/015
  8. Holik E.F. Simulation results of an inductively-coupled RF plasma torch in two and three dimensions for producing a metal matrix composite for nuclear fuel cladding. Thesis. Master of science. Texas, 2008, 90 p.
  9. Sanaz A. E. A modeling framework for the synthesis of carbon nanotubes by RF plasma technology. Thesis. Doctor of Philosophy. Torento, 2013, 184 p.
  10. Grishin Yu.M., Kozlov N.P., Skryabin A.S. Efficiency of silicon production from quartz within argon gas-plasma flow with hydrogen additive. Inzhenernyy zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation, 2013, no. 5. (In Russian). DOI: 10.18698/2308-6033-2013-5-716
  11. Smythe W.R. Static and dynamic electricity. New York, 1950. 604p.
  12. Abeele D.V., Degrez G. Similarity analysis for the high-pressure inductively coupled plasma source. Plasma Sources Sci. Technol., 2004, vol.13, pp. 680–690. DOI: 10.1088/0963-0252/13/4/018
  13. Belov G.V. Termodinamicheskoe modelirovanie: metody, algoritmy, programmy[Thermodynamic modeling: methods, algorithms, programs]. Мoscow, Nauchnyy Mir Publ., 2002. 184 p. (In Russian).
  14. Morozov A.I. Vvedenie v plazmodinamiku [Introduction to plasmodynamics]. Moscow, Fizmatlit Publ., 2008. 616 p. (In Russian).
  15. Dresvina S.V. Nizkotemperaturnaya plazma. VCh i SVCh plazmotrony [Low-temperature plasma. RF and microwave plasma generators]. Novosibirsk, Nauka Publ., 1992. 319 p. (In Russian).
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2018 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)