Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Ballistic Thermal Transfer in Nanosystems

# 05, May 2016
DOI: 10.7463/0516.0840329
Article file: SE-BMSTU...o151.pdf (1231.61Kb)
authors: A.A. Barinov1,*, Ts. Zhunvei1, V.I. Hvesyuk1

1 Bauman Moscow State Technical University, Moscow, Russia

This work is concerned with analysis of cross-plane thermal transfer in nanofilms.
The paper presents a developed general model of phonon radiation transfer (EPRT) based on the Boltzmann transport equation. The EPRT model assumes that the thermal transfer inside a dielectric or metal medium between two metal walls is maintained at different temperatures. These walls are like heat reservoirs; their surfaces are blackbodies. The paper first presents a model of the phonon radiation transfer of the absolute blackbodies in a wide range of temperatures where a model of the ballistic thermal transfer is applicable. It conducts a comparative analysis between phonon radiation transfer and electromagnetic radiation.
The basic equation is a formula to calculate a phonon radiation intensity of the absolute blackbody depending on the temperature. Therefore, the formula for the total intensity of phonons is similar to the Stefan-Boltzmann law. The main difference of phonon radiation transfer is that a value of the phonon Stefan-Boltzmann constant is affected by temperature and properties of materials (average acoustic waves in solid bodies and Debye temperature). This can be seen from the curves for Si, Ge, and Diamond.
The paper presents a received analytical equation for effective thermal conductivity using a heat flux in a cross-plane direction. The results obtained show the size and temperature dependences of the effective thermal conductivity of silicon, germanium and diamond nanofilms for the ballistic transport in the cross-plane direction. Finally, the paper compares the calculated results with those of available models of different foreign authors, which are in good compliance.

  1. Zhang Z.M. Nano/Microscale Heat Transfer. NY: McGraw-Hill Book Company, 2007. 504 p.
  2. 15.Fourirer J. Théorie analytique de la chaleur. Cover. Chez Firmin Didot, père et fils, 1822. 639 p.
  3. 16.Casimir H.B.G. Note on the conduction of heat in crystals. Physica V, 1938, vol. 5, no. 6, pp. 495-500. DOI:10.1016/S0031-8914(38)80162-2
  4. 17.Landau L.D., Lifshitz E.M. Teoriya uprugosti [Theory of Elasticity]. Moscow, Nauka Publ., 1987. 387 p. (in Russian). (In Russian).
  5. 18.Peierls R.E. Quantum Theory of Solids. Oxford University Press, Oxford. 2001. 238 p.
  6. 19.Majumdar A. Microscale heat conduction in dielectric thin films. ASME J. Heat Transfer. 2003, vol. 115, pp. 7-16. DOI:10.1115/1.2910673
  7. 20.Ozisik M.N. Slozhniy teploobmen [Complex heat exchange] Moscow, Mir Publ., 1976. 615 p. (in Russian).
  8. 21.Khvesyuk V.I. Statisticheskaya termodinamika [Statistical thermodynamics]. Moscow, Bauman MSTU Publ., 2014. 128 p. (in Russian).
  9. 22.Landau L.D., Lifshitz E.M. Statisticheskaya fizika [Statistical physics]. Moscow, FizMatLit Publ., 2010. 616 p. (in Russian).
  10. 23.Zou J., Balandin A. J. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, vol. 89, pp. 2932. DOI: 10.1063/1.1345515
  11. 24.McGaughey A.J.H., Landry E.S., Sellan D.P., Amon C.H. Size-dependent model for thin film and nanowire thermal conductivity. J. Appl. Phys. 2011, vol. 99, pp. 131904. DOI: 10.1063/1.3644163
  12. 25.Dong Y., Cao B.Y., Guo Z.Y. Ballistic–diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms. Physica E, 2015, vol. 66, pp. 1–6. DOI: 10.1016/j.physe.2014.09.011
  13. 26.Adachi S., Capper P., Kasap S., Wi A. Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. John Wiley & Sons, Ltd., Publication. 2009. 413 p.
  14. 27.Dames C., Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 2014, vol. 95, pp. 682. DOI: 10.1063/1.1631734
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2018 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)