Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

The Concept of Building a Radar Station Based on the Microwave Photonics Components

# 05, May 2016
DOI: 10.7463/0516.0840246
Article file: SE-BMSTU...o065.pdf (1164.76Kb)
authors: A.V. Shumov1,*, S.I. Nefedov1, A.R. Bikmetov1

1 Bauman Moscow State Technical University, Moscow, Russia

The microwave photonics is one of the most promising directions in modern radar engineering. Application of microwave photonics components provides a significant improvement in certain characteristics of radar:
   - dramatically improving informational content and resolution range of radar;
   - increasing range of target detection;
   - high noise immunity;
   - performance stability under changing climate, primarily, temperature conditions;
   - lessened weight and size parameters of antenna systems;
   - lessened cost.
The article reviews and analyses modern domestic and foreign publications concerning the application of microwave photonics components in radar engineering.
There is a lack of the deep-laid circuit solution of radar based on the active phased array antenna (APAA) realizing all the major advantages of using microwave photonics components despite the fairly large number of articles concerned with hardware components of microwave photonics, circuit design, and creating the separate units of radio-photon radar.
The article presents the elaboration results of a radar station (RS) structure based on the components of microwave photonics, shows the selection and justifies the specific technical solutions for all the key units making the system as a whole: a device to form a sound signal, an optical transceiver unit, an optical digital receiver, and the fiber optic lines.
The paper makes selection and justification of the specific hardware components (both domestic and foreign) currently available at the world market to create the system thereby showing that now in engineering point of view it is already possible to implement a radar based on the components of microwave photonics.
The calculation of tactical and technical characteristics of radar type “Voronezh-M” using microwave photonics components has shown a dramatically increased resolution and detection range, as well as, at least, 2 times reduced weight and size parameters of the product.

  1. Loskutov1 V.Yu., Chapurskiy1 V.V., Kryuchkov1 I.V., Nefedov1 S.I., Noniashvili M.I. Influence of Transceiver Positions Configuration of MIMO Radar System with Wide Beam Antennas on Potential Measurement Accuracy. Radiooptika. MGTU im. N.E. Baumana. Elektron. zhurn. = Radiooptics of the Bauman MSTU, 2015, no. 05, pp. 68–78. (in Russian). DOI: 10.7463/rdopt.0515.0777801
  2. Verba V. S., Merkulov V. I., Sadovskiy P. A. Multiband radars. Multitarget tracking challenges. Radiooptika. MGTU im. N.E. Baumana. Elektron. zhurn. = Radiooptics of the Bauman MSTU, 2015, no. 05, pp. 37–51. (in Russian). DOI: 10.7463/rdopt.0515.0817948
  3. Zaitsev D.F. Nanofotonika i ee primenenie [Nanophotonics and its application]. Moscow, Firma «AKTEON», 2012. 445 p. (in Russian).
  4. Belousov A.A., Volkhin Iu.N. Gamilovskaia A.V., Dubrovskaia A.A., Tikhonov E.V. Radiophotonical methods and tools used for microwave analog and digital signal processing. Prikladnaya fotonika = Applied photonics, 2014, No.1, pp. 65-86. (in Russian).
  5. Gamilovskaya A.V., Belousov A. A., Tikhonov E. V., Dubrovskaya A. A. Volkhi Yu. N. Overview And The Study Of Possible Methods Of Ultra-Wideband Microwave Analog Processors Implementation Using Radio-Photonic Techniques Elektronnaya tekhnika. Seriya 2: Poluprovodnikovye pribory= Electronic engineering. Series 2. Semiconductor devices. 2015, Iss.5 (239), pp.4-11. (in Russian).
  6. Starikov R.S. Fotonnye ATsP [Photonic ADC] Uspekhi sovremennoi radioelektroniki. Vypusk 2. [Successes of modern radio electronics. Issue 2]. Moscow, Radiotekhnika Publ., 2015. (in Russian).
  7. Vol'khin Yu. N., Gamilovskaya A. V. O vozmozhnosti realizatsii sverkhshirokopolosnykh analogovykh radiofotonnykh traktov diapazona SVCh s polozhitel'nymi koeffitsientami peredachi [The possibility of realizing ultra-wideband analog circuits radiophonic range microwave with positive coefficients of transmission]. XVIII koordinatsionnyi nauchno-tekhnicheskii seminar po SVCh tekhnike [XVIII of the coordination scientific-technical seminar on microwave technique]. Khakhaly, 2013 (in Russian).
  8. Malyshev S.A., Chizh A.L., Mikitchuk K.B. Volokonno-opticheskie lazernye i fotodiodnye moduli SVCh-diapazona i sistemy radiofotoniki na ikh osnove [Fiber-optic laser and photodiode modules, microwave range and system of radio photons based on them]. Elektronika i mikroelektronika SVCh: Vserossiiskaya konferentsiya. Plenarnye doklady [Electronics and microelectronics microwave: all-Russian conference. Plenary reports]. 2015. pp.10. Available at: http://www.mwelectronics.ru/2015/Papers/O00_01_Malyshev_Volokno-opticheskie_lazery.pdf, accessed 01.05.2016. (in Russian).
  9. Malyshev C.A., Chizh A.L. Volokonno-opticheskie linii peredachi SVCh-signalov dlya priemo-peredayushchikh sistem kosmicheskikh apparatov [Fiber-optic transmission of microwave signals for transmitter-receiver systems of space vehicles]. Pyatyi Belorusskii kosmicheskii kongress: materialy [Fifth Belarusian space Congress: proceedings]. Minsk, OIPI NAN Belarusi, 2011, Vol.1, pp. 192-197. (in Russian).
  10. Mikitchuk K., Chizh A., Malyshev S. Analog optical link operating at the gain peak wavelength of an erbium-doped fiber amplifier. Proceedings of 44th European Microwave Conference (EuMC). Rome, Italy. 6-9 October 2014. pp. 679-683.
  11. Chizh A., Malyshev S.,. Tepteev A, Andrievski V., Guszhinskaya E., Romanova L. Beam-lead partially-depleted-absorber photodiode. Proceedings of International Topical Meeting on Microwave Photonics (MWP). Noordwijk, The Netherlands. 2012. pp. 1–4.
  12. Malyshev S.A., Chizh A.L., Tepteev A.A., Shulenkov A.S. Moshchnyi InAlAs/InGaAs/InP SVCh-fotodiod Shottki [High-power microwave photodiode Schottky] Tret'ya Vserossiiskaya konferentsiya «Elektronika i mikroelektronika SVCh»: materialy [The third all-Russian conference "electronics and microelectronics microwave: materials]. Sankt-Peterburg, Russia, 2014. pp. 76-80. (in Russian).
  13. Chizh A., Malyshev S., Jefremov S., Levitas B., Naidionova I. Impulse transmitting photonic antenna for ultra-wideband applications. Proceedings of 18th International Conference on Microwave Radar and Wireless Communications (MIKON). Vilnius, Lithuania. 14–16 June 2010. pp. 346-348.
  14. Levitas B., Drozdov M., Naidionova I., Jefremov S., Malyshev S., Chizh A. UWB system for time-domain near-field antenna measurement. Proceedings of the 43rd European Microwave Conference. Nurnberg, Germany. 2013. pp. 388-391.
  15. Weiwen Zou, Hao Zhang, Xin Long, Siteng Zhang, Yuanjun Cui1, Jianping Chen All-optical bandwidth-tailorable radar. ResearchGate: website. 17 p. Available at: https://www.researchgate.net/publication/281227313, accessed 01.05.2016.
  16. PHODIR: Photonics-Based Fully Digital Radar System: website. Available at: http://www.phodir.eu/phodir/pubs.php, accessed 01.05.2016.
  17. Ticonderoga Class AEGIS Cruisers. Naval-technology: website. Available at: http://www.naval-technology.com/projects/ticonderoga/, accessed 01.05.2016.
  18. Riza N. A. Photonic Information Processing System (PIPS) Lab. Photonic Signal Processing for Antennas. DARPA AOSP Study Group. 2000.
  19. Mityashev M.B. On the implementation of radio photonic technologies in APAA of radar systems Vestnik SibGUTI = The Herald of SibSUTIS, 2015, no.2, pp.178-190. (in Russian).
  20. Belousov A.A., Dubrovskaya A.A. The use of methods and means of radio photons in communication systems, radar and electronic warfare systems and REP. Rossiya molodaya: peredovye tekhnologii – v promyshlennost' = Young Russia: advanced technologies in the industry. 2013. No. 1. pp. 181-184. (in Russian).
  21. Agliullin T.A., Morozov O.G. Fazirovannaya antennaya reshetka s fotonnym diagrammoobrazovaniem [Phased antenna array with photonic diagrammatical]. Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «XXII tupolevskie chteniya (shkola molodykh uchenykh)»: sbornik dokladov [International youth scientific conference "XXII Tupolev reading (school of young scientists)": collection of papers]. RFFI, KNITU-KAI. 2015. pp. 486-491. (in Russian).
  22. Lee J. J., Loo R. Y., Livingston S., Lewis J. B., Yen Huan-Wun, Tangonan G.L., Wechsberg M. Photonic Wideband Array Antennas. IEEE Transactions on Antennas and Propagation. 1995. V. 43, Iss. 9, pp. 966 - 982. DOI: 10.1109/8.410214
  23. Lee J.J. RF Photonics for Beamforming and Array Applications. Presentation on Optics Microwave Interactions. 2002. EN-028-04. pp. 4.1–4.31.
  24. Goutzoulis A., Davies K., Zomp J., Hrycak P., Johnson A. Developmentand field demonstration of a hardware - compressive fiber - optic true-time-delay steering system for phased-array antennas. Selected Papers on Photonic Control Systems for Phased-Array Antennas. Florida, USA: CREOL & Dept, 1997. pp. 593–600.
  25. Pan Shilong, Zhu Dan, Zhang Fangzheng Microwave Photonics for Modern Radar Systems. Transactions of Nanjing of Aeronautics and Astronautics. 2014. Vol. 3. pp. 219-240.
  26. PHODIR: Photonics-Based Fully Digital Radar System. CORDIS: Community Research and Development Information Service: website. Available at: http://cordis.europa.eu/project/rcn/92836_en.html, accessed 01.05.2016.
  27. Preimushchestva ispol'zovaniya VOLS [The benefits of using VOLS]. V1 elektroniks. Sistemy peredachi signalov: sait [B1 electronics. System of signal transmission: website]. Available at: http://www.v1electronics.ru/img/articles/vols/06.gif php, accessed 01.05.2016. (in Russian).
  28. Savchenkov A., Ilchenko V. S., Byrd J., Liang W., Eliyahu D., Matsko A. B., Seidel M.L. Whispering-gallery mode based optoelectronic oscillators. Newport Beach, CA, J. Mod. Opt., 2003, vol.50, pp.2523-2542.
  29. Compact Opto-Electronic Oscillator (OEO). Low Phase Noise Microwave Signal Source Module. Oewave: website. Available at: http://www.oewaves.com/compact-oeo-sp-1149514981, accessed 01.05.2016.
  30. Advanced Opto-Electronic Oscillator (OEO). Ultra-Low Phase Noise Microwave Signal Source Module. Oewaves: website. Available at: http://www.oewaves.com/advanced-oeo-sp-1171610647, accessed 01.05.2016.
  31. Kossakovski D., Solomatine I., Morozov N., Ilchenko V. Multi-wavelength optical source at 12.5 GHz optical spacing based on a coupled optoelectronic oscillator with a whispering gallery mode resonator/ Proceedings of SPIE. Laser Resonators and Beam Control VII. 2004. Vol. 5333. P. 167–173. DOI:10.1117/12.537910
  32. Del'Haye P., Herr T., Gavartin E., Gorodetsky M.L., Holzwarth R., Kippenberg T.J. Octave Spanning Tunable Frequency Comb from a Microresonator. Physical Review Letters. 2011. vol. 107.
  33. Del`Haye P., Arcizet O., Schliesser A., Holzwarth R., Kippenberg T.J. Full Stabilization of a Microresonator based Optical Frequency Comb. Physical Review Letters. 2008. vol. 101.
  34. Agha I.H., Okawachi Y., Gaeta A.L. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Optics Express, 2009, vol. 17, no. 18, pp.16209-16215.
  35. Savchenkov A., Matsko A.B., Ilchenko V S., Solomatine I., Seidel D., Maleki L. Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator. Physical Review Letters, 2008, vol. 101, no. 9.
  36. Herr T., Hartinger K., Riemensberger J., Wang C.Y., Gavartin E., Holzwarth R., Gorodetsky M. L., Kippenberg T.J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, vol. 6, pp. 480-487.
  37. Kippenberg T. J., Holzwarth R., Diddams S.A. Microresonator-Based Optical Frequency Combs. Science, 2011, vol. 332, no. 6029, pp. 555-559.
  38. Ilchenko V.S., Savchenkov A.A., Matsko A.B., Maleki L. Nonlinear optics and crystalline whispering gallery mode cavities. Physical Review Letters, 2004, vol. 92.
  39. Avrutin E.A., Marsh J.H., Portnoi E.L. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEE Proceedings-Optoelectronics, 2000, vol.147, no.4, pp.251-278.
  40. Hou L., Haji M., Marsh J.H. Monolithic Mode-Locked Laser With an Integrated Optical Amplifier for Low-Noise and High-Power Operation. IEEE Journal on Selected Topics in Quantum Electronics, 2013, vol.19, no.4. DOI: 10.1109/JSTQE.2013.2238508
  41. Katalog [Catalog]. Spetsial'nye Sistemy. Fotonika: сайт [The Special System. Photonics: website]. Available at: http://sphotonics.ru/catalog/, accessed 01.05.16.
  42. Peredayushchie opticheskie moduli [Transmitting optical modules]. DILAZ: sait [DILAZ: website]. Available at: http://www.dilas.ru/pom/, accessed 01.05.16.
  43. MXAN-LN series. 1550 nm band Analog Intensity Modulator. Photline Technologies: website. Available at: http://www.qubig.com/datasheets/photline/MXAN-LN-series.pdf, accessed 01.05.16.
  44. MXDO-LN-20. 1550 nm band Analog Dual Outputs Modulator Preliminary data-sheet. Photline Technologies: website. Available at: http://www.symphotony.com/wp-content/uploads/MXDO-LN-20.pdf, accessed 01.05.2016.
  45. Thorelabs inc.: website. Available at: http://www.thorlabs.de/navigation accessed 01.05.2016.
  46. Elektroopticheskie modulyatory [Electro-optic modulators]. Spetsial'nye Sistemy: fotonika: sait [Special Systems: Photonics: website]. Available at: http://sphotonics.ru/catalog/eo-modulator/, accessed 01.05.2016 (in Russian).
  47. Abies J. H. Resonant enhanced modulator development. R-FLICS Program Review Presentation, Sarnoff Co, 2001, Aug., pp.1-31.
  48. Cox C., Ackerman E. Steps to the Photonic Antenna. Analog Optical Signal Processing (AOSP) Study Group (DARPA/MTO). December 6, 2000. pp. 1-30.
  49. Nolatech: website. Available at: http://nolatech.ru/, accessed 01.05.16. (in Russian).
  50. The New IEEE-Std-1241-2010 for Analog-to-Digital Converters Steven J. Tilden, Solomon M. Max. 2011 International Workshop on ADC Modelling. Testing and Data Converter Analysis and Design and IEEE 2011 ADC Forum, 2011. Orvieto, Italy.
  51. Valley G.C. Photonic analog-to-digital converters. Optics Express, Vol.15, Iss. 5, pp.1955-1982. DOI: 10.1364/OE.15.001955
  52. Khilo A., Spector S.J., Grein M.E., Nejadmalayeri A.H., Holzwarth C.W, Sander M.Y., Dahlem M.S., Peng M.Y., Geis M.W., DiLello N.A., Yoon J.U., Motamedi A., Orcutt J.S., Wang J.P., Sorace-Agaskar Ch.M., Popovic M.A., Sun J., Zhou G.-R., Byun H., Chen J., Hoyt J.L., Smith H.I., Ram R.J., Perrott M., Lyszczarz T.M., Ippen E.P., Kärtner F.X. Photonic ADC: overcoming the bottleneck of electronic jitter. Optics Express. 2012. Vol. 20. Iss. 4. pp.4454-4469. DOI: 10.1364/OE.20.004454
  53. Greshishchev Y., Aguirre J., Besson M., Gibbins R., Fait C., Flemke P., Ben-Hamida N., Pollex D., Schvan P., Wang S. A 40 GS/s6b ADC in 65 nm CMOS. International Solid State Circuits Conference (ISSCC). 2010 paper 21.7.
  54. Chu M., Jacob P., Kim J., LeRoy M., Kraft R., McDonald J. A 40 GS/s time interleaved ADC using SiGe BiCMOS technology. IEEE Journal of Solid-State Circuits, 2010, V. 45, pp. 380-390.
  55. Valley G., Hurrell J., Sefler G. Photonic analog-to-digital converters: fundamental and practical limits. Proc. SPIE, 2004, V. 5618, pp. 96-106.
  56. RLSVoronezh-M/DM [RLS Voronezh-M/DM]. Voennye novosti: sait [Military news: website] Available at: http://dokwar.ru/publ/vooruzhenie/pvo_i_rvsn/rls_voronezh_m_dm/16-1-0-628, accessed 01.05.16.
  57. Na opytno-boevoe dezhurstvo zastupit ocherednaya RLS "Voronezh-DM" [On experimental combat duty to intercede another radar "Voronezh-DM"] Oruzhie Rossii: sait [Russian Weapons: website]. Available at: http://www.arms-expo.ru/news/armed_forces/na_opytno_boevoe_dezhurstvo_zastupit_ocherednaya_rls_voronezh_dm/, accessed 01.05.16.
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2017 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)